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Relativistic quantum mechanics of free fermions in the presence of the spiral disloca-
tion of space–time with a distortion of a radial line into a spiral is studied within the

Katanaev–Volovich geometric approach. The generalized Dirac equation in this back-

ground is constructed. Exact closed-form solutions are found by reducing the problem
to that of a nonrelativistic two-dimensional 1/r-problem with a complex coupling con-

stant. The influence of the defect parameter related to the spiral dislocation on these

solutions is investigated. We also study the charge density of free fermions in the presence
of such a spiral dislocation in space–time. Based on the Bender–Boettcher approach for

non-Hermitian Hamiltonians we study, in addition, bound-state solutions of the system.
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1. Introduction

One of the predictions of grand unified theories is that topological defects might

be generated through phase transitions caused by vacuum symmetry breaking in

the early universe. In recent decades, the influences of such topological defects

on the physical properties of various systems have been investigated (for some

reviews see Refs. 1–3). The existence of linear topological defects in gravitation
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and condensed matter physics can be related to curvatures (disclinations), torsions

(dislocations), and a combination of them called dispirations.4–6 Thus, disclinations

and dislocations (classified as screw and spiral dislocations) in the elastic medium as

well as cosmic defects can be viewed as some sort of background deformations (linear

defects) in space–time. Hence, many researchers have studied the influence of these

topological defects on the nonrelativistic and relativistic quantum behavior from

various different aspects.7–9 Among them let us mention the investigation of the

Aharonov–Bohm effect,10,11 interactions of the electric and magnetic quadrupole

moment with topological defects,12,13 the quantum harmonic oscillator,14 the Dirac

oscillator,15 relativistic fermions and bosons,11,16 the study of the Kaluza–Klein

theory,17 Landau levels,18 spin and pseudospin symmetries19 and the quantum

dynamics in a cosmic string background.20

It is well known that nonrelativistic and relativistic particles can be studied

in the framework of quantum mechanics, with the presence or absence of physical

potentials, within the background of flat space–times and those with topological

defects. The investigation of relativistic particles, depending on their internal spin

degree of freedom, must be carried out within their mathematical framework, which

are the Klein–Gordon equation, the Dirac equation and the Duffin–Kemmer–Petiau

(DKP) equation for spin zero, spin one-half and spin one, respectively.21–27 For the

many works done in those frameworks we may mention the investigations of Dirac’s

equation in the presence of magnetic fields and noncentral electromagnetic poten-

tials,28,29 the interaction of Dirac fermions and the Dirac oscillator with topological

defects,15,16,19,24–26 the relativistic harmonic oscillator under pseudospin symme-

try,30 the scalar quantum particle with Gurses space–time,31 the thermal properties

of the one-dimensional boson particles in Rindler space–time,32 the two-dimensional

DKP oscillator in the presence of a Coulomb potential in the cosmic string back-

ground33 and the DKP oscillator in the presence of topological defects.27

In this work, following the Katanaev–Volovich geometric approach,9 we con-

struct the generalized Dirac equation for relativistic spin one-half fermions in the

presence of the spiral dislocation space–time with a distortion of a radial line into

a spiral. Besides its spectral properties we also investigate the associated charge

density behavior.

This paper is organized as follows. In Sec. 2, starting with the line element of

the spiral dislocation in (1 + 3)-dimensional space–time, we present the associated

metric tensor. Then, by using the geometric approach of Katanaev–Volovich, we

construct the Dirac equation in the background of the spiral dislocation in space–

time. Based on the underlying symmetries we make an appropriated ansatz and

reduce the generalized Dirac equation to a Schrödinger-like equation for the radial

Coulomb problem with a complex coupling constant. Then, in Sec. 3, we investigate

the spectral properties of this non-Hermitian Schrödinger Hamiltonian which in

turn allows us to discuss the spectral properties of the relativistic system under

investigation. We also briefly discuss the charge density related to free fermions

in the presence of the spiral dislocation in space–time. Section 4 reconsiders the
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Schrödinger problem within the framework of the Bender–Boettcher (BB) approach

of non-Hermitian PT-symmetric quantum mechanics. Finally, in Sec. 5, we give a

short summary with some concluding remarks.

2. Dirac’s Equation in Spirally Dislocated Space Time

Motivated by the extensive work dedicated to the study of the interaction of non-

relativistic and relativistic quantum particles within topological defect space–time

as outlined above, we investigate here the influence of spiral dislocation with a dis-

tortion of a radial line into a spiral for the free Dirac fermion using the Katanaev–

Volovich geometric approach.9 Thus, by adopting units where ~ = 1 and c = 1,

the line element of the spiral dislocation with the mentioned distortion in (1 + 3)-

dimensional space–time is given by5,34

ds2 = −dt2 +
(
1 + β2r2

)
dr2 + 2βr2 dr dϕ+ r2 dϕ2 + dz2 . (2.1)

In the above the time coordinate is an arbitrary real number t ∈ (−∞,∞). The

radial coordinate r =
√
x2 + y2, the azimuthal angle ϕ and altitude z are the

usual cylindric coordinates in the three-dimensional space with ranges given by

[0,∞), [0, 2π) and (−∞,∞), respectively. In (2.1) the topological defect parameter

is denoted by β ≥ 0 and is related to Burger’s vector b through the relation

β = |b|/2π. The direction of Burger’s vector relative to the defect line determines

the type of the defect in disordered solids.

The contravariant metric tensors gµν associated with the line element (2.1) are

given in the form

gµν =




−1 0 0 0

0 1 −β 0

0 −β β2 +
1

r2
0

0 0 0 1



, µ, ν ∈ {t, r, ϕ, z} . (2.2)

To study the relativistic quantum mechanics associated with Dirac particles in

the presence of topological defect space–time, we construct a local reference frame

related to defected space–time, in a manner similar to the well-known proce-

dure used in curved space–time, and redefined the Dirac spinors in this back-

ground.26,35,36 The local reference frame may be defined via θ̂a = eaµ(x)dxµ,

where the objects dxµ and eaµ(x) are introduced as coordinate basis of one-

forms and tetrads, respectively. Moreover, the tetrads satisfy the condition gµν =

eaµ(x)eaν(x)ηab, with the Minkowski tensor ηab = diag(− + + +) and Latin in-

dices a, b ∈ {0, 1, 2, 3}. The inverse of tetrads is denoted by eµa(x) satisfying the

conditions eµa(x)eaν(x) = δµν and eaµ(x)eµb(x) = δab.
16,19,37

In the present case, let us introduce a local reference frame characterized by non-

coordinate bases as follows θ̂0 = dt, θ̂1 = dr, θ̂2 = βr dr + r dϕ and θ̂3 = dz. The
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nonvanishing inverse of tetrads corresponding to the line element (2.1) is written

as et0 = er1 = ez3 = 1, eϕ1 = −β and eϕ2 = 1/r.

To investigate spin one-half fermions under the background of a topological

defect space–time using the Dirac equation, we must generalize this equation by

using the covariant derivative ∇µ replacing the partial derivative ∂µ and taking into

account the generalized Dirac matrices γµ instead of the standard Dirac matrices

γa. Hence, the covariant derivative, under the background of the spiral dislocation

space–time with a distortion of a radial line into a spiral, can be proposed as38,39

∇µ = ∂µ +
i

4
ωµab(x)Σab , Σab =

i

4

[
γa, γb

]
, (2.3)

where the standard Dirac matrices corresponding to Minkowski space–time, denoted

with γa, are given by28,40–42

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 1

)
. (2.4)

Here the Pauli matrices σi obey the relation
(
σiσj +σjσi

)
= 2ηij for indices i, j =

1, 2, 3. It should be noted that the generalized Dirac matrices, defined via relation

γµ = eµaγ
a, are found to be γt = γ0, γr = γ1, γϕ = −βγ1 + γ2/r and γz = γ3.

In addition, the second term to the right of Eq. (2.3) is defined as the spinorial

connection denoted by Γµ and reads Γµ = i
4ωµab(x)Σab. The spin connection is

denoted by ωµab(x) and its nonzero components, without considering the effect

of torsion in this issue, are obtained via the Maurer–Cartan structure equations

dθ̂a + ωab ∧ dxµ = 0. Here, with the effect of torsion, we have ωab = ωaµ b(x)dxµ

and hence ω2
ϕ 1 = −ω1

ϕ 2 = 1. Thus, according to resulting non-null components of

spin connection, non-null components of the spinorial connection can be given by

Γϕ = − i
2σ3.

At this point, let us write the generalized form of the Dirac equation in this

framework as15,16,19,26,29

[
iγµ∇µ −M

]
Ψ(t, r) = 0 , (2.5)

where M stands for the mass of the fermion and Ψ(t, r) represents the corresponding

Dirac field. To obtain a set of four coupled differential equations related to the

generalized Dirac equation (2.5), we first substitute the covariant derivative (2.3)

and the resulting Dirac matrices γµ together with the spinorial connection Γγ in

Eq. (2.5). Then, based on the invariance of the system under time translations,

translations along the z-axis as well as its invariance under rotation about the

z-axis we propose an ansatz as follows:

Ψ(t, r) = e−iEt+i(`+ 1
2 )ϕ+ikz




ψ1(r)

ψ2(r)

ψ3(r)

ψ4(r)


 , (2.6)

2150215-4
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where E denotes the energy eigenvalue of the fermionic system, k ∈ (−∞,∞) is

the wave number for the free motion along the z-axis and jz = ` + 1/2 is the

z-component of total angular momentum with ` = 0, ±1,±2, . . . . As a result we

obtain a set of four differential equations related to the generalized Dirac equation

(2.5) being expressed in the following form:

[E −M ]ψ1 − kψ3 +

[
i

d

dr
+

(
i

r
+ β

)(
`+

1

2

)
+

1

2

(
i

r
+ β

)]
ψ4 = 0 , (2.7a)

[E −M ]ψ2 +

[
i

d

dr
−
(

i

r
− β

)(
`+

1

2

)
+

1

2

(
i

r
− β

)]
ψ3 + kψ4 = 0 , (2.7b)

kψ1 +

[
−i

d

dr
−
(

i

r
+ β

)(
`+

1

2

)
− 1

2

(
i

r
+ β

)]
ψ2 − [E +M ]ψ3 = 0 , (2.7c)

[
−i

d

dr
+

(
i

r
− β

)(
`+

1

2

)
− 1

2

(
i

r
− β

)]
ψ1 − kψ2 − [E +M ]ψ4 = 0 . (2.7d)

These explicit expressions suggest to establish a relation between the compo-

nents of the Dirac spinor of the form

ψ1(r) = ηψ3(r) , ψ2(r) = ηψ4(r) , (2.8)

where the constant η is given by η =
√

(E +M)/(E −M). Substitution of (2.8) in

(2.7) results in a reduction of the four Dirac equations to a pair of Dirac equations,

which, when combined, lead us to the following second-order radial equation for ψ4

d2ψ4(r)

dr2
+

[
1

r
− iβ(2`+ 1)

]
dψ4(r)

dr

+

[
E2 −M2 − k2 − β2`(`+ 1)− (`+ 1)2

r2

]
ψ4(r) = 0 . (2.9)

In the last step, we transform Eq. (2.9) into a solvable differential equation by

setting

ψ4(r) = eiβ(2`+1)r/2U(r) . (2.10)

The resulting equation for U then reads

d2U(r)

dr2
+

1

r

dU(r)

dr
+

[
E2 −M2 − k2 +

β2

4
+

iβ

2r
(2`+ 1)− (`+ 1)2

r2

]
U(r) = 0 .

(2.11)

Obviously, this equation is identical in form with the two-dimensional radial

Schrödinger equation for the Coulomb-like potential V (r) = −α/r with a purely

imaginary coupling constant α = iβ(` + 1/2) with angular momentum m = ` + 1

and energy eigenvalue E = E2−M2−k2 +β2/4. Despite the fact that this does not

represent a Hermitian Schrödinger operator we will show in the following section

that it has real non-negative energy eigenvalues E ≥ 0.

2150215-5
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3. Spectral Properties and Charge Density

In this section we will first present explicit results for the eigenvalues and eigen-

function of the Schrödinger-like equation (2.11) by reducing it to the well-studied

Whittaker equation. This will then provide us with closed-form expression of the

spectral properties for the associated Dirac problem.

For this let us put z := 2iκr and w(z) = r1/2U(r), which reduces Eq. (2.11) to

the Whittaker equation
[
∂2
z −

L2 − 1/4

z2
+
ν

z
− 1

4

]
w(z) = 0 , (3.1)

where L := |` + 1| ≥ 0, ν := β(2` + 1)/4κ and κ2 := E = E2 −M2 − k2 + β2/4.

The Whittaker equation has the two independent solutions given by the Whittaker

functions Mν,L(z) and Wν,L(z), see e.g. Ref. 43. Note that for L > −1/2 only

the first one vanishes at z = 0 as Mν,L(z) ∼ zL+1/2 and is related to Kummer’s

confluent hypergeometric function 1F1(a, c, z) via relation

Mν,L(z) = zL+1/2e−z/2 1F1(L− ν + 1/2, 2L+ 1, z) . (3.2)

Hence, the regular unbound solutions of (2.11) are given by

Uκ(r) = N r|`+1|e−iκr
1F1(L− ν + 1/2, 2L+ 1, 2iκr) , (3.3)

where N stands for a proper normalization constant and κ = ±
√
E ∈ R denotes

a radial incoming and outgoing wave, respectively. For a recent discussion on such

Coulomb wave function see, for example, Ref. 44 and references therein. We only

note that the above solution (3.3) is identical in form with the standard Coulomb

wave function, however here ν ∈ R, whereas for the usual unbound Coulomb prob-

lem the parameter ν would have purely imaginary values.

Obviously the spectrum of the associated Dirac Hamiltonian is given by

Ekκ = ±
√
M2 + k2 + κ2 − β2/4 , k, κ ∈ R (3.4)

and is independent of the deformation parameter β. The components of the asso-

ciated Dirac eigenstates read

ψ1kκ(r) = −
√
Ekκ +M

Ekκ −M

[
i d
dr +

(
i
r + β

)
(`+ 1)√

k2 + κ2 − k

]
eiβ(2`+1)r/2Uκ(r) , (3.5a)

ψ2kκ(r) =

√
Ekκ +M

Ekκ −M
eiβ(2`+1)r/2Uκ(r) , (3.5b)

ψ3kκ(r) = −
[

i d
dr +

(
i
r + β

)
(`+ 1)√

k2 + κ2 − k

]
eiβ(2`+1)r/2Uκ(r) , (3.5c)

ψ4kκ(r) = eiβ(2`+1)r/2Uκ(r) . (3.5d)

In the flat space limit β → 0 these reduce to the known solutions in cylinder

coordinates45 as in this case the function (3.3) in essence reduces to a Bessel func-

tion Uκ(r) = ÑJ|`+1|(κr).

2150215-6
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In the following we intend to investigate the charge density related to free

fermions in the presence of the spiral dislocation in space–time. It is clear that

in the context of the geometric approach, the four-current density, as a vector cur-

rent, is expressed as a four-dimensional analog of the electric current density. Now,

let us represent the zero-component of four-current components (charge density)

corresponding to relativistic fermions as J t ∝ Ψ̄γtΨ, in which Ψ̄ = Ψ†γ0, with

Ψ† =
(
Ψ∗
)T

, which means the complex conjugate transpose of the primary wave

function Ψ. Thus, according to the results of Sec. 2, that is with regard to γt = γ0

and Eqs. (2.6) and (2.7), we can write

J0(r) = Ψ̄γ0Ψ = Ψ†Ψ . (3.6)

Thereby

J0
kκ(r) =

[
1 +

( (1+`)2

r2 + β2

4

)
(√
k2 + κ2 − k

)2

](
1 +
Ekκ +M

Ekκ −M

)
|Uκ(r)|2

+

(
1 + Ekκ+M

Ekκ−M
)

(√
k2 + κ2 − k

)2
[
U ′κ(r)U∗

′

κ (r) +

(
2 + 2`+ iβr

2r

)
U ′κ(r)U∗κ(r)

+

(
2 + 2`− iβr

2r

)
Uκ(r)U∗

′

κ (r)

]
. (3.7)

If we focus on Eq. (3.7), we see that the charge density related to free fermions

subject to spiral dislocation space–time with a distortion of a radial line into a spiral

depends on wave functions Uκ(r) given by Eq. (3.3), the β parameter corresponding

to the spiral dislocation and the quantum numbers κ, k and `.

4. The Bender Boettcher Bound States

In this section, we reconsider the eigenvalue problem (2.11) following closely the

discussion of BB.46,47 With x = r and U(r) = x−1/2F (x) this eigenvalue problem

takes the form

F ′′(x) + [E − Veff(x)]F (x) = 0 , (4.1)

where the effective one-dimensional potential is given by

Veff(x) :=
(`+ 1)2 − 1/4

x2
− i

β

2x
(2`+ 1) . (4.2)

For large x we may ignore the centrifugal part in this potential and then realize

that V (x) ∼ (ix)−1. Hence it behaves like the special case N = −1 of the BB

potential VBB(x) ∼ (ix)N .46,47 Following their approach we first extend the config-

uration space to the full real line x ∈ R keeping in mind that in the end we only

consider solutions vanishing at x = 0. Obviously on this extended configuration

space the above potential is PT-symmetry as V ∗eff(x) = Veff(−x) and hence the

2150215-7
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energy eigenvalues E are expected to be real. Furthermore, in order to have a well-

defined eigenvalue problem with square-integrable eigenfunction we need to distort

the configuration space into a contour in the lower complex x-plane approaching

the anti-Stoke lines,46,47 i.e.

lim
Re x→±∞

x

|x| = exp

{
−i
π

2
± i

2π

N + 2

}
. (4.3)

In the current case where N = −1 this contour starts at x = −ε− i∞, approaches

the origin and ends at x = ε− i∞ with ε↘ 0.

As before let us put z := 2iκr which, however, will now be real and non-

negative along the distorted line r ∈ iR−. Remember that we also have κ2 = E and

w(z) := F (x), which reduces Eq. (4.1) to the same Whittaker equation (3.1). Again

the solution being regular at z = 0 is given by the Whittaker functions Mν,L(z).

However it diverges for large z → ∞ unless ν − L − 1/2 ∈ N0. Hence a square-

integrable solution implies ν = n + L + 1/2 with n = 0, 1, 2, 3, . . . . This directly

leads to the eigenvalues

En` =
β2

4

(
2`+ 1

2n+ 2|`+ 1|+ 1

)2

, (4.4)

which in turn result in the discrete spectrum of the associated Dirac problem

given by

En` = ±
√

(2`+ 1)2β2

4(2n+ 1 + 2|`+ 1|)2
− β2

4
+ k2 +M2 . (4.5)

Noting that κn` = β(`+ 1/2)/(2n+ 2|`+ 1|+ 1), the corresponding eigenfunctions

are given by

Un`(r) = N|r||`+1|e−κn`|r|L2|`+1|
n (2κn`|r|) , (4.6)

with N being a normalization constant and L2L
n (z) denotes the associated Laguerre

polynomial of order n = 0, 1, 2, 3, . . . . Recall that here the configuration space is

given by r ∈ iR−. The four components of the Dirac spinor corresponding to the

primary wave function (2.6) in terms of wave functions (4.6) are in essence given

via (3.5) with Ekκ replaced by En` and κ by κn`.

The eigenvalues (4.5) remain real for all values of β if

β2

M2
≤ 4

(
1 +

k2

M2

)
(2n+ 1 + 2|`+ 1|)2

(2n+ 1 + 2|`+ 1|)2 − (2`+ 1)2
. (4.7)

Obviously for increasing n with a fixed ` the upper bound for β allowing for such

a discrete eigenvalue decreases. This is illustrated in Fig. 1 where the influence of

the spiral dislocation parameter β on the relativistic energy eigenvalues is shown.

2150215-8
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eq. (4.1) to the same Whittaker eq. (3.1). Again the solution being regular at z = 0 is given by the
Whittaker functions Mν,L(z). However it diverges for large z →∞ unless ν −L− 1/2 ∈ N0. Hence
a square integrable solution implies ν = n + L + 1/2 with n = 0, 1, 2, 3, . . .. This directly leads to
the eigenvalues

En` =
β2

4

(
2`+ 1

2n+ 2|`+ 1|+ 1

)2

, (4.4)

which in turn result in the discrete spectrum of the associated Dirac problem given by

En` = ±
√

(2`+ 1)2β2

4 (2n+ 1 + 2 |`+ 1|)2 −
β2

4
+ k2 +M2 . (4.5)

Noting that κn` = β(`+ 1/2)/(2n+ 2|`+ 1|+ 1), the corresponding eigenfunction are given by

Un`(r) = N|r||`+1|e−κn`|r|L2|`+1|
n (2κn`|r|) , (4.6)

with N being a normalisation constant and L2L
n (z) denotes the associated Laguerre polynomial of

order n = 0, 1, 2, 3, . . .. Recall that here the configuration space is given by r ∈ iR−. The four
components of the Dirac spinor corresponding to the primary wave function (2.6) in terms of wave
functions (4.6) are in essence given via (3.5) with Ekκ replaced by En` and κ by κn`.

The eigenvalues (4.5) remain real for all values of β if

β2

M2
≤ 4

(
1 +

k2

M2

)
(2n+ 1 + 2|`+ 1|)2

(2n+ 1 + 2|`+ 1|)2 − (2`+ 1)2
. (4.7)

Obviously for increasing nwith a fixed ` the upper bound for β allowing for such a discrete eigenvalue
decreases. This is illustrated in figure 1 where the influence of the spiral dislocation parameter β on
the relativistic energy eigenvalues is shown.
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Figure 1: The discrete energy eigenvalues (4.5) are shown in units of M as a function of the de-
formation parameter β/M parameter for the quantum number n = 2, 4, 8 as indicated. The other
parameters are chosen to k/M = 0.22 and l = 1.
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Fig. 1. The discrete energy eigenvalues (4.5) are shown in units of M as a function of the
deformation parameter β/M parameter for the quantum number n = 2, 4, 8 as indicated. The

other parameters are chosen to k/M = 0.22 and l = 1.

We also note that the eigenvalues (4.5) are bounded from below and above as

follows:

M2 + k2 − β2/4 ≤ E2
n` ≤M2 + k2 . (4.8)

This may be compared with the continuous spectrum (3.4), which is bounded from

below as follows:

E2
kκ ≥M2 + k2 − β2/4 . (4.9)

In other words, the discrete eigenvalues are embedded in the continuous spectrum.

Again the problem is similar to the radial Coulomb problem with a purely

complex interactions and represents a PT-symmetric system of a Bender–Boettcher-

type for N = −1. Note that BB only considered N > 1 and state that for N < 1

there are no real values. However, for N = −1 we show the existence of such real

eigenvalues. In addition, there is an accumulation point
[
M2 + k2 − β2/4

]1/2
for

large n, which is at the lower bound in contrast to the case for the usual Coulomb

problem. For β = 0 the discrete spectrum vanishes as expected.

5. Conclusions

In this contribution we started with the presentation of spiral dislocation space–

time with a distortion of a radial line into a spiral through the line element. In the

light of the Katanaev–Volovich model, the interaction of relativistic free fermions

with the spiral dislocation in space–time is studied through the Dirac equation.

In this regard, according to the resulting wave equation, we see that the

background space–time described by spiral dislocations can determine a shifted

Coulomb-like potential, that is, C1 + C2/r in such a geometric approach. It should

be noted that coefficients of shifted Coulomb-like potential are real and complex

2150215-9
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constants, i.e. C1 = β2/4 and C2 = iβ(`+ 1/2) such that they consist of the defect

parameter β and angular momentum quantum number `. Accordingly, the investi-

gation of the behavior of relativistic fermions under this background provides the

shifted Coulomb-like potential generated by spiral dislocations in space–time so

that this induced potential can be considered as an inevitable consequence of the

existence of this type of the topological defect in background space–time.

It is worth noting that the analytical solutions corresponding to a fermion in the

background involving the shifted Coulomb-like potential induced by a distortion of

a radial line into a spiral in space–time, are obtained in the relativistic regime. From

the components of the associated Dirac eigenstates, the effect of spiral dislocations

in space–time can be observed on the behavior of relativistic fermions through

the β parameter. Thus, by assuming β → 0, we can find the relativistic wave

function corresponding to a fermion in Minkowski space–time. In this way, it can

be seen that the degeneracy of the relativistic energy spectrum is modified by the

β parameter. The corresponding energy eigenvalues and wave functions are found

by reducing this problem to the nonrelativistic 1/r-problem in two dimensions with

a purely imaginary coupling constant. The charge density is also briefly discussed.

In addition, the complex 1/r-problem is studied within the BB approach of PT

symmetric quantum mechanics resulting in a discrete spectrum, which is discussed

in some detail.
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